본문 바로가기
파이썬

파이썬 scikit-learn에서 자신 만의 스코어러 기능을 생성 / 사용자 정의하는 방법은 무엇입니까?

by º기록 2020. 11. 18.
반응형


make_scorer 로 만들려고했지만 작동하지 않았습니다.



하지만 저는 추정기를 사용하는 방법을 모릅니다. 제 경우에는 SVR입니다. 분류 자 (예 : SVC)로 전환해야합니까? 그리고 어떻게 사용합니까?

내 사용자 지정 오류 기능은 다음과 같습니다.

def my_custom_loss_func(X_train_scaled, Y_train_scaled):
    error, M = 0, 0
    for i in range(0, len(Y_train_scaled)):
        z = (Y_train_scaled[i] - M)
        if X_train_scaled[i] > M and Y_train_scaled[i] > M and (X_train_scaled[i] - Y_train_scaled[i]) > 0:
            error_i = (abs(Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(z))
        if X_train_scaled[i] > M and Y_train_scaled[i] > M and (X_train_scaled[i] - Y_train_scaled[i]) < 0:
            error_i = -(abs((Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(z)))
        if X_train_scaled[i] > M and Y_train_scaled[i] < M:
            error_i = -(abs(Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(-z))
    error += error_i
    return error

변수 M 이 null / 0이 아닙니다. 단순함을 위해 0으로 설정했습니다.

누구든지이 사용자 지정 채점 기능의 예제 응용 프로그램을 보여줄 수 있습니까? 당신의 도움을 주셔서 감사합니다!

 

해결 방법

 


from sklearn.grid_search import GridSearchCV
from sklearn.metrics import make_scorer
from sklearn.svm import SVR

import numpy as np

rng = np.random.RandomState(1)

def my_custom_loss_func(X_train_scaled, Y_train_scaled):
    error, M = 0, 0
    for i in range(0, len(Y_train_scaled)):
        z = (Y_train_scaled[i] - M)
        if X_train_scaled[i] > M and Y_train_scaled[i] > M and (X_train_scaled[i] - Y_train_scaled[i]) > 0:
            error_i = (abs(Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(z))
        if X_train_scaled[i] > M and Y_train_scaled[i] > M and (X_train_scaled[i] - Y_train_scaled[i]) < 0:
            error_i = -(abs((Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(z)))
        if X_train_scaled[i] > M and Y_train_scaled[i] < M:
            error_i = -(abs(Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(-z))
    error += error_i
    return error

# Generate sample data
X = 5 * rng.rand(10000, 1)
y = np.sin(X).ravel()

# Add noise to targets
y[::5] += 3 * (0.5 - rng.rand(X.shape[0]/5))

train_size = 100

my_scorer = make_scorer(my_custom_loss_func, greater_is_better=True)

svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1),
                   scoring=my_scorer,
                   cv=5,
                   param_grid={"C": [1e0, 1e1, 1e2, 1e3],
                               "gamma": np.logspace(-2, 2, 5)})

svr.fit(X[:train_size], y[:train_size])

print svr.best_params_
print svr.score(X[train_size:], y[train_size:])

 

참조 페이지 https://stackoverflow.com/questions/32401493

 

 

반응형

댓글